Abstract
Different cancer patients may respond differently to cancer treatment due to the heterogeneity of cancer. It is an urgent task to develop an efficient computational method to identify drug responses in different cell lines, which guides us to design personalized therapy for an individual patient. Hence, we propose an end-to-end algorithm, namely MOFGCN, to predict drug response in cell lines based on Multi-Omics Fusion and Graph Convolution Network. MOFGCN first fuses multiple omics data to calculate the cell line similarity and then constructs a heterogeneous network by combining the cell line similarity, drug similarity, and the known cell line-drug associations. Secondly, it learns the latent features for cancer cell lines and drugs by performing graph convolution operations on the heterogeneous network. Finally, MOFGCN applies the linear correlation coefficient to reconstruct the cancer cell line-drug correlation matrix to predict drug sensitivity. To our knowledge, this is the first attempt to combine graph convolutional neural network and linear correlation coefficient for this significant task. We performed extensive evaluation experiments on the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) databases to validate MOFGCN's performance. The experimental results show that MOFGCN is superior to the state-of-the-art algorithms in predicting missing drug responses. It also leads to higher performance in predicting drug responses for new cell lines, new drugs, and targeted drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.