Abstract
Patients with the same cancer types may present different genomic features and therefore have different drug sensitivities. Accordingly, correctly predicting patients’ responses to the drugs can guide treatment decisions and improve the outcome of cancer patients. Existing computational methods leverage the graph convolution network model to aggregate features of different types of nodes in the heterogeneous network. They most fail to consider the similarity between homogeneous nodes. To this end, we propose an algorithm based on two-space graph convolutional neural networks, TSGCNN, to predict the response of anticancer drugs. TSGCNN first constructs the cell line feature space and the drug feature space and separately performs the graph convolution operation on the feature spaces to diffuse similarity information among homogeneous nodes. After that, we generate a heterogeneous network based on the known cell line and drug relationship and perform graph convolution operations on the heterogeneous network to collect the features of different types of nodes. Subsequently, the algorithm produces the final feature representations for cell lines and drugs by adding their self features, the feature space representations, and the heterogeneous space representations. Finally, we leverage the linear correlation coefficient decoder to reconstruct the cell line-drug correlation matrix for drug response prediction based on the final representations. We tested our model on the Cancer Drug Sensitivity Data (GDSC) and Cancer Cell Line Encyclopedia (CCLE) databases. The results indicate that TSGCNN shows excellent performance drug response prediction compared with other eight state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.