Abstract

In a proton exchange membrane fuel cell (PEMFC), flow field design is an important factor that influences the distributions of current density and water accumulation. The segmented model developed in prior study is used to investigate the effect of flow field patterns on current density distribution. This model predicts the distributed characteristics of water content in the membrane, relative humidity in the flow channels, and water accumulation in the gas diffusion layers (GDLs). Three single cells with different flow field patterns are designed and fabricated. These three flow field designs are simulated using the segmented model and the predicted results are compared and validated by experimental data. This segmented model can be used to predict the effect of flow field patterns on water and current distributions before they are machined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call