Abstract
Abstract Background Gastric cancer is a major oncological challenge, ranking highly among causes of cancer-related mortality worldwide. This study was initiated to address the variability in patient responses to combination chemotherapy, highlighting the need for personalized treatment strategies based on genomic data. Methods We analyzed whole-genome and RNA sequences from biopsy specimens of 65 advanced gastric cancer patients before their chemotherapy treatment. Using machine learning techniques, we developed a model with 123 omics features, such as immune signatures and copy number variations, to predict their chemotherapy outcomes. Results The model demonstrated a prediction accuracy of 70–80% in forecasting chemotherapy responses in both test and validation cohorts. Notably, tumor-associated neutrophils emerged as significant predictors of treatment efficacy. Further single-cell analyses from cancer tissues revealed different neutrophil subgroups with potential antitumor activities suggesting their usefulness as biomarkers for treatment decisions. Conclusions This study confirms the utility of machine learning in advancing personalized medicine for gastric cancer by identifying tumor-associated neutrophils and their subgroups as key indicators of chemotherapy response. These findings could lead to more tailored and effective treatment plans for patients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have