Abstract
Some projections predict that fishery resources in tropical areas will be negatively affected by climate change, resulting in the displacement of species and reducing their availability for fishing. In this study, the potential geographic distribution of Scomberomorus sierra under current conditions in the Colombian Pacific Ocean was simulated using maximum entropy (MaxEnt) modeling software, based on species presence data and satellite-derived environmental variables (Sea Surface Temperature (SST), Chlorophyll-a and bathymetry). The future distributions of S. sierra in 2020s (short term) and 2080s (long term) were projected under the RCP 2.6 and 8.5 scenarios for four ensembled global circulation models (GCM) obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The current and future geographical distributions were modeled for the species' fishing months (November to April), and pixel-wise change distribution and core shift were determined. The results indicated good performance for the distribution models in the present and future scenarios (AUC > 0.9). The RCP 8.5 scenario, in both, the short and long term, indicated the highest adverse changes in the species distribution. The distribution core shift indicates that under RCP 2.6 in the 2020s for November and December, the shift is towards the central zone of the Colombian Pacific. In the 2080s (long term), the distribution centroid tends to move towards the central zone, further from the coastline. Results also showed the same change tendency for RCP 8.5 in both the 2020s and 2080s. This is one of the first studies that elucidate the effects of climate change on a commercial species in the Colombian Pacific. The results give an insight into future management strategies for seerfish fisheries, which can also be used as a reference for studying other species.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have