Abstract

Predicting the response of aquatic species to environmental contaminants is challenging, in part because of the diverse biological traits within communities that influence their uptake and transfer of contaminants. Nanoplastics are a contaminant of growing concern, and previous research has documented their uptake and transfer in aquatic food webs. Employing an established method of nanoplastic tracking using metal-doped plastics, we studied the influence of biological traits on the uptake of nanoplastic from water and diet in freshwater predators through two exposure assays. We focused on backswimmers (Anisops wakefieldi) and damselfly larvae (Xanthocnemis zealandica) - two freshwater macroinvertebrates with contrasting physiological and morphological traits related to feeding and respiration strategies. Our findings reveal striking differences in nanoplastic transfer dynamics: damselfly larvae accumulated nanoplastics from water and diet and then efficiently eliminated 92% of nanoplastic after five days of depuration. In contrast, backswimmers did not accumulate nanoplastic from either source. Differences in nanoplastic transfer dynamics may be explained by the contrasting physiological and morphological traits of these organisms. Overall, our results highlight the importance and potential of considering biological traits in predicting transfer of nanoplastics through aquatic food webs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.