Abstract
Precise, fast, and reliable identification and quantification of microplastic contamination are essential for determining their environmental concentrations for risk assessments. This study investigates the use of nuclear magnetic resonance (NMR) spectroscopy to quantify microplastics by analysing dilution series of polystyrene (PS), polyisoprene-cis (PI), polybutadiene-cis (PB), polylactic acid (PLA), polyvinyl chloride (PVC) and polyurethane (PU). Each polymer type was dissolved in a suitable solvent and an internal standard was utilized for quantification. Detection and quantification limits for each polymer type were established in two ways: (1) by using an equation based on proton signals and an internal standard with known concentration and (2) by using the LOQ based on the signal-to-noise ratio. Both data sets were compared and showed that using the internal standard (method 1) results in more accurate and lower concentration limits in the range of 0.2–8 µg mL−1 for all six polymer types, while the LOQ based on the SNR (method 2) gives consistently higher concentration limits (1–10 µg mL−1). The research shows the accuracy, efficacy, and reliability of quantitative NMR spectroscopy for polymer analysis in these concentration ranges compared to established quantifying methods, such as, PyGC/MS, FTIR, or Raman spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.