Abstract

Precise (sub-meter level) real-time navigation using a space-capable single-frequency global positioning system (GPS) receiver and ultra-rapid (real-time) ephemerides from the international global navigation satellite systems service is proposed for low-Earth-orbiting (LEO) satellites. The C/A code and L1 carrier phase measurements are combined and single-differenced to eliminate first-order ionospheric effects and receiver clock offsets. A random-walk process is employed to model the phase ambiguities in order to absorb the time-varying and satellite-specific higher-order measurement errors as well as the GPS clock correction errors. A sequential Kalman filter which incorporates the known orbital dynamic model is developed to estimate orbital states and phase ambiguities without matrix inversion. Real flight data from the single-frequency GPS receiver onboard China's SJ-9A small satellite are processed to evaluate the orbit determination accuracy. Statistics from internal orbit assessments indicate that three-dimensional accuracies better than 0.50 m and 0.55 mm/s are achieved for position and velocity, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.