Abstract
Antigen proteins, assembled on nanoparticles, can be recognized by antigen-presenting cells effectively to enhance antigen immunogenicity. The ability to simultaneously display multiantigens on the same nanoparticle could have numerous applications but remained technical challenges. Here, we described a method for precise assembly of multiple antigens on nanoparticles with specially designed affinity peptides. First, we designed and screened affinity peptides with high affinity and specificity, which could respectively target the key amino acid residues of classical swine fever virus (CSFV) E2 protein or porcine circovirus type 2 capsid protein (PCV2 Cap) accurately. Then, we conjugated the antigen proteins to poly(lactic acid-glycolic acid) copolymer (PLGA) and Gram-positive enhancer matrix (GEM) nanoparticles through the peptides and perfectly assembled two kinds of multiantigen display nanoparticles with different particle sizes. Subsequently, the immunological properties of the assembled nanoparticles were tested. The results showed that the antigen display nanoparticles could promote the maturation, phagocytosis, and proinflammatory effects of antigen-presenting cells (APCs). Besides, compared with the antigen proteins, multiantigen display nanoparticles could induce much higher levels of antibodies and neutralizing antibodies in mice. This strategy may provide a technical support for the study of protein structure and the research and development of polyvalent vaccines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.