Abstract

We report a detailed investigation of the precipitation behavior of gold in float-zone silicon from a highly supersaturated solution. Nucleation, morphology, and crystallography as well as the decomposition of the solution were examined using high-resolution electron microscopy, selected area diffraction combined with tilting experiments, Hall-effect measurements, and energy dispersive x-ray spectroscopy. After in-diffusion of gold at 1275 {degree}C annealing experiments were performed at 850 {degree}C for durations ranging from 5 min up to 35 d. It is shown that gold precipitates in small spherical particles (diameter: 10--20 nm) consisting of a metastable gold silicide. By means of selected area diffraction combined with a special tilting procedure, the unit cell is proved to be orthorhombic with lattice parameters {ital a}=0.971 nm, {ital b}=0.768 nm, and {ital c}=0.703 nm. Systematic absence of reflections in several precipitate zone-axis patterns reveals the space group of the silicide to be {ital Pnma} or {ital Pn}2{sub 1}{ital a}. According to Hall-effect measurements the concentration of substitutional gold decreases to a few percent within 5 min annealing at 850 {degree}C. Only a part of it has precipitated in gold silicide particles, which are found at small extrinsic stacking faults. The stacking faults represent a density of self-interstitialsmore » Si{sub {ital i}} of about 10{sup 18} cm{sup {minus}3}, which according to control experiments is about a factor of 50 above the equilibrium concentration of Si{sub {ital i}} at 1274 {degree}C. As annealing proceeds the stacking faults disappear, and gold is finally found in spherical particles embedded stress-free into the silicon matrix.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.