Abstract
A model for the growth and shrinkage of stacking faults in silicon is presented. It accounts for interstitial traps and a nonuniform concentration of intrinsic point defects. The complete system of balance equations of intrinsic point defects is solved numerically to simulate the kinetics of stacking faults during oxidation under the assumption that float-zone silicon contains less interstitial traps than Czochralski silicon. Investigation of the influence of different interstitial trap concentrations on the growth and shrinkage of surface stacking faults shows that the kinetics of surface stacking faults is not strongly affected by the presence of interstitial traps. Surface stacking faults are expected to grow in float-zone and Czochralski silicon in a similar way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.