Abstract
Software verification is an important stage of the software development process, particularly for mission-critical systems. As the traditional methodology of using unit tests falls short of verifying complex software, developers are increasingly relying on formal verification methods, such as explicit state model checking, to automatically verify that the software functions properly. However, due to the ever-increasing complexity of software designs, model checking cannot be performed in a reasonable amount of time when running on general-purpose cores, leading to the exploration of hardware-accelerated model checking. FPGAs have been demonstrated to be promising verification accelerators, exhibiting nearly three orders of magnitude speedup over software. Unfortunately, the “FPGA programmability wall,” particularly the long synthesis and place-and-route times, block the general adoption of FPGAs for model checking. To address this problem, we designed a runtime-programmable pipeline specifically for model checkers on FPGAs to minimize the “preparation time” before a model can be checked. Our design of the successor state generator and the state validator modules enables FPGA-acceleration of model checking without incurring the time-consuming FPGA implementation stages, reducing the preparation time before checking a model from hours to less than a minute, while incurring only a 26% execution time overhead compared to model-specific implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Reconfigurable Technology and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.