Abstract

Twin-field (TF) quantum key distribution (QKD) represents a novel QKD approach whose principal merit is to beat the point-to-point private capacity of a lossy quantum channel, thanks to performing single-photon interference in an untrusted node. Indeed, recent security proofs of various TF-QKD type protocols have confirmed that the secret key rate of these schemes scales essentially as the square root of the transmittance of the channel. Here, we focus on the TF-QKD protocol introduced by Curty et al, whose secret key rate is nearly an order of magnitude higher than previous solutions. Its security relies on the estimation of the detection probabilities associated to various photon-number states through the decoy-state method. We derive analytical bounds on these quantities assuming that each party uses either two, three or four decoy intensity settings, and we investigate the protocol’s performance in this scenario. Our simulations show that two decoy intensity settings are enough to beat the point-to-point private capacity of the channel, and that the use of four decoys is already basically optimal, in the sense that it almost reproduces the ideal scenario of infinite decoys. We also observe that the protocol seems to be quite robust against intensity fluctuations of the optical pulses prepared by the parties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call