Abstract
The intense research activity on Twin-Field (TF) quantum key distribution (QKD) is motivated by the fact that two users can establish a secret key by relying on single-photon interference in an untrusted node. Thanks to this feature, variants of the protocol have been proven to beat the point-to-point private capacity of a lossy quantum channel. Here we generalize the main idea of the TF-QKD protocol introduced by Curty et al to the multipartite scenario, by devising a conference key agreement (CKA) where the users simultaneously distill a secret conference key through single-photon interference. The new CKA is better suited to high-loss scenarios than previous multipartite QKD schemes and it employs for the first time a W-class state as its entanglement resource. We prove the protocol’s security in the finite-key regime and under general attacks. We also compare its performance with the iterative use of bipartite QKD protocols and show that our truly multipartite scheme can be advantageous, depending on the loss and on the state preparation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.