Abstract

Digital security practitioners are facing enormous challenge in face of the growing repertoire of physical attacks, e.g., Side Channel Attack (SCA) and Fault Injection Attack (FIA). Countermeasures to such threats are usually very different in nature and come with a significant performance penalty. While the FIA countermeasures rely on fault-detecting sensors or concurrent error detection schemes, SCA countermeasures are based on data masking or dual-rail logic circuits. Recently, a low-overhead FIA countermeasure has been proposed that utilises a ring oscillator circuit with Phase-Locked Loop (PLL). In this paper, we extend that countermeasure to further provide protection against SCA, thereby proposing PLL based Protection Against Physical attacks (PPAP). We demonstrate the PPAP on an FPGA prototype under rigorous SCA and FIA testing. We evaluate SCA resistance using the TVLA metric and observe a 2000x increase in SCA protection (in terms of number of traces) with PPAP. We further improve the security of PPAP using statistical analysis through an improved PPAP design (iPPAP) with an increase in SCA resistance of at least 5000x compared to the unprotected implementation with a minimal area overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.