Abstract

Due to the excessive utilization of memory, data compression is an evergreen research topic. Realizing the constant demand of compression algorithms, this article presents a compression algorithm to analyse the digital VLSI circuits for constraint optimization, such as test data volume, switching power, chip area overhead and processing speed of testing. This article proposes a new power transition X filling based selective Huffman encoding technique, which achieves better data compression, switching power reduction, chip area overhead reduction and speed of testing. The performance of the proposed work is examined with the help of ISCAS benchmark circuits. Initially, the test set is occupied by using the power transition X filling technique to replace the don't care bits and the filled test set is further encoded by selective Huffman encoding technique. The experimental results show that the proposed power transition X filling based selective Huffman encoding gives effective results compared to the related data compression techniques with minimal time and memory consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.