Abstract

We reexamine the idea that the origin of black-hole entropy may lie in the entanglement of quantum fields between the inside and outside of the horizon. Motivated by the observation that certain modes of gravitational fluctuations in a black-hole background behave as scalar fields, we compute the entanglement entropy of such a field, by tracing over its degrees of freedom inside a sphere. We show that while this entropy is proportional to the area of the sphere when the field is in its ground state, a correction term proportional to a fractional power of area results when the field is in a superposition of ground and excited states. The area law is thus recovered for large areas. Further, we identify the location of the degrees of freedom that give rise to the above entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.