Abstract

Entanglement entropy is often speculated as a strong candidate for the origin of the black-hole entropy. To judge whether this speculation is true or not, it is effective to investigate the whole structure of thermodynamics obtained from the entanglement entropy, rather than just to examine the apparent structure of the entropy alone or to compare it with that of the black hole entropy. It is because entropy acquires a physical significance only when it is related to the energy and the temperature of a system. From this point of view, we construct a `thermodynamics of entanglement' by introducing an entanglement energy and compare it with the black-hole thermodynamics. We consider two possible definitions of entanglement energy. Then we construct two different kinds of thermodynamics by combining each of these different definitions of entanglement energy with the entanglement entropy. We find that both of these two kinds of thermodynamics show significant differences from the black-hole thermodynamics if no gravitational effects are taken into account. These differences are in particular highlighted in the context of the third law of thermodynamics. Finally we see how inclusion of gravity alter the thermodynamics of the entanglement. We give a suggestive argument that the thermodynamics of the entanglement behaves like the black-hole thermodynamics if the gravitational effects are included properly. Thus the entanglement entropy passes a non-trivial check to be the origin of the black-hole entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.