Abstract

The entanglement entropy between quantum fields inside and outside a black hole horizon is a promising candidate for the microscopic origin of black hole entropy. We show that the entanglement entropy may be defined in loop quantum gravity, and compute its value for spin network states. The entanglement entropy for an arbitrary region of space is expressed as a sum over punctures where the spin network intersects the region's boundary. Our result agrees asymptotically with results previously obtained from the isolated horizon framework, and we give a justification for this agreement. We conclude by proposing a new method for studying corrections to the area law and its implications for quantum corrections to the gravitational action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call