Abstract

We revisit the problem of finding the entanglement entropy of a scalar field on a lattice by tracing over its degrees of freedom inside a sphere. It is known that this entropy satisfies the area law -- entropy proportional to the area of the sphere -- when the field is assumed to be in its ground state. We show that the area law continues to hold when the scalar field degrees of freedom are in generic coherent states and a class of squeezed states. However, when excited states are considered, the entropy scales as a lower power of the area. This suggests that for large horizons, the ground state entropy dominates, whereas entropy due to excited states gives power law corrections. We discuss possible implications of this result to black hole entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.