Abstract

In this paper, different measurement schemes are studied in order to investigate the possibilities and limitations of scalar- and vector-based measurement systems for radio frequency electromagnetic fields compliance assessments of fifth generation mobile communication user equipment (UE). Two UE antenna array designs, transmitting at 15 GHz and employing patch and notch antenna elements, are considered for different phase excitations. Using free space power density as the exposure metric, the maximum permissible transmitted power of UE, compliant with the maximum permissible exposure limits specified by the U.S. Federal Communications Commission (FCC) and the basic restrictions of the International Commission on Non-Ionizing Radiation Protection, is determined. The accuracy of different measurement schemes is assessed using numerical simulation. Verifying measurements is carried out in a semianechoic chamber. The results indicate that, for UE employing array antennas and intended to be used in immediate vicinity of the human body, scalar measurement systems used in combination with straightforward field combination techniques will lead to overly conservative results. A more accurate and less conservative approach for these products is to conduct separate measurements for different excitations in order to span the space of possible excitations. This will result in a more complicated measurement setup and increase the measurement time, which points to a need for very fast measurement systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.