Abstract

The drastic distortion of potentiodynamic polarization curves measured at high potential scan rates prevents the extraction of accurate kinetic parameters. In this work, we start by measuring potentiodynamic polarization curves of AA7075 at scan rates ranging from 0.167 mV·s−1 to 100 mV·s−1, in an acidic 0.62 M NaH2PO4 solution and a near-neutral 3.5 wt% NaCl solution. Changes in potentiodynamic polarization curves are observed not only at different scan rates and electrolytes but also between replicated experiments. Contrary to what was reported in previous studies, the disturbance of charging current associated with high scan rates does not satisfactorily explain the potentiodynamic polarization shape. Instead, the high field model that incorporates the kinetics of anodic oxide growth successfully captures the features of experimental potentiodynamic polarization curves. Compared to Tafel’s theory, the high field model explains remarkably the changing kinetics with scan rates, electrolytes, and the variance between measurements performed at different sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.