Abstract

Scanning electrochemical cell microscopy is becoming the tool of choice for the investigation of localized metal corrosion. Typically, potentiodynamic polarization measurements in scanning electrochemical cell microscopy are performed at high potential scan rates. However, Tafel extrapolation applied to high-scan-rate potentiodynamic polarization curves would yield inaccurate corrosion kinetics due to the interference of double-layer charging current or mass transport of species in the metal oxide. Instead, the high field model was used to simulate the potentiodynamic polarization curves of pure aluminum at 25, 50, 100, and 200 mV/s in neutral and acidic phosphate solutions, thus enabling quantitative analysis of local corrosion kinetics by fitting the potentiodynamic polarization curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.