Abstract

As one of two most important cereals in the world, and with the continuous increase in population and demand for food consumption worldwide, rice has been attracting researchers’ attention for improving its potential yield in the future, particularly as it relates to climate change. However, what will be the potential limit of world rice yield in the future, and how does global warming affect the yield of world rice? Therefore, analyzing the potential yield of world rice affected by global warming is of great significance to direct crop production worldwide in the future. However, by far, most modeled estimations of rice yield are based on the principle of production function from static biological dimension and at local or regional levels, whereas few are based on a time series model from a dynamic evolutionary angle and on global scale. Thus, in this paper, both average and top (national) yields of world rice by 2030 are projected creatively using the Auto-regressive Integrated Moving Average and Trend Regression (ARIMA-TR) model and based on historic yields since 1961; in addition, the impact of global warming on the yields of world rice is analyzed using a binary regression model in which global mean temperature is treated as the independent variable whereas the yield is expressed as the dependent variable. Our study concludes that between 2021 and 2030, the average yield of world rice is projected to be from 4835 kg/ha to 5195 kg/ha, the top yield from 10,127 kg/ha to 10,269 kg/ha, or the average yield ranging from 47.74% to 50.59% of the top yield. From 1961 to 2020, through to2030, global warming will exert a negative impact on the average yield of world rice less than that of the top yield, which partly drives the gap between these two yields and gradually narrowed; for world rice by 2030, the opportunities for improving global production should be dependent on both high and low yield countries as the average yield is approaching the turning point of an S-shaped curve in the long-term trend. These insights provide the academic circle with innovative comprehension of world rice yield and its biological evolution for global food security relating to global warming in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call