Abstract
Shallow ditches, which generally receive livestock or domestic sewage, are widely distributed in rural and suburban areas, making them important sites for antibiotic exposure. Because of the easy penetration of solar irradiation, the photochemical reactions of antibiotics tend to be active in shallow ditches. This study investigated the photodegradation potential of 21 commonly used antibiotics belonging to five categories in a typical shallow ditch by conducting simulated solar irradiation experiments. The influence of dissolved organic matter (DOM) in ditch water on the photodegradation of antibiotics was analyzed, and a model based on DOM changes was established to predict the degradation behavior of antibiotics. The results indicated that the degradation rates of different varieties of antibiotics in ultrapure water and ditch water followed the trend of fluoroquinolones > tetracyclines > sulfonamides > macrolides > lincosamides. In ditch water, direct photodegradation and photooxidation mediated by 3DOM∗ played predominant roles in the antibiotic photodegradation, whereas the contributions of singlet oxygen (1O2) and hydroxyl radicals (·OH) varied significantly depending on the reactivity of the antibiotics. A simple and effective model was proposed for predicting the photodegradation process of antibiotics in ditch water based on the degree of DOM photobleaching determined by excitation-emission matrix fluorescence spectroscopy coupled with parallel factor analysis. The prediction model was simplified by considering the similarity in photochemical properties within the same category of antibiotics and was validated by field tests. This study fills a critical research gap by evaluating the photodegradation of antibiotics in shallow ditches, thereby providing valuable insights into their fate and transport in shallow ditch water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have