Abstract

Vibration-based structural health monitoring (SHM) is essential for evaluating structural integrity. Traditional methods using contact vibration sensors like accelerometers have limitations in accessibility, coverage, and impact on structural dynamics. Recent digital advancements offer new solutions through high-speed camera-based measurements. This study explores how camera settings (speed and resolution) influence the accuracy of dynamic response measurements for detecting small cracks in damped cantilever beams. Different beam thicknesses affect damping, altering dynamic response parameters such as frequency and amplitude, which are crucial for damage quantification. Experiments were conducted on 3D-printed Acrylonitrile Butadiene Styrene (ABS) cantilever beams with varying crack depth ratios from 0% to 60% of the beam thickness. The study utilised the Canny edge detection technique and Fast Fourier Transform to analyse vibration behaviour captured by cameras at different settings. The results show an optimal set of camera resolutions and frame rates for accurately capturing dynamic responses. Empirical models based on four image resolutions were validated against experimental data, achieving over 98% accuracy for predicting the natural frequency and around 90% for resonance amplitude. The optimal frame rate for measuring natural frequency and amplitude was found to be 2.4 times the beam's natural frequency. The findings provide a method for damage assessment by establishing a relationship between crack depth, beam thickness, and damping ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.