Abstract

Ecological niche models play a pivotal role in assessing the impacts of climatic changes on species, and in the development of conservation strategies. This study aimed to evaluate the potential impact of different climatic factors using ecological niche modeling. These models were constructed using occurrence data and bioclimatic variables with the MaxEnt (Maximum Entropy Algorithm) modeling algorithm. The analysis covers three timeframes: the current and two future periods (2060 to 2080 and 2080 to 2100). Our findings indicate that the suitable habitats of wild lentils will be impacted to varying degrees under all future climate scenarios, with the most significant impact projected in the worst-case scenario, which predicts a temperature increase of 5°C by 2100. It is recommended to consider habitat reduction or shift in four taxa while developing conservation strategies. Comparing habitat suitability across timeframes, some species such as L. nigricans (M. Bieb.) Godron exhibited no drastic changes. On the other hand, the models predict slight reductions, shifts, or fragmentations in the potential habitats of L. culinaris subsp. odemensis (Ladiz.) M.E. Ferguson & al., L. lammotei Czefr., and L. ervoides (Brign.) Grande, in future periods. Particularly, a significant reduction and shift in the projected potential habitats of L. culinaris subsp. orientalis (Boiss.) Ponert, accepted as the progenitor of the lentil, means that conservation measures should be taken. In conclusion, this study emphasizes the significance of the protection of habitats for lentil wild relatives in specific regions, even when species are not currently under threat. It is recommended to develop ex situ and in situ conservation strategies that consider potential impacts of climate changes, especially in the centers of genetic diversity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.