Abstract
A fundamental question in neuroscience is how neurons perform precise operations despite inherent variability. This question also applies to neuromorphic engineering, where low-power microchips emulate the brain using large populations of diverse silicon neurons. Biological neurons in the auditory pathway display precise spike timing, critical for sound localization and interpretation of complex waveforms such as speech, even though they are a heterogeneous population. Silicon neurons are also heterogeneous, due to a key design constraint in neuromorphic engineering: smaller transistors offer lower power consumption and more neurons per unit area of silicon, but also more variability between transistors and thus between silicon neurons. Utilizing this variability in a neuromorphic model of the auditory brain stem with 1,080 silicon neurons, we found that a low-voltage-activated potassium conductance (g(KL)) enables precise spike timing via two mechanisms: statically reducing the resting membrane time constant and dynamically suppressing late synaptic inputs. The relative contribution of these two mechanisms is unknown because blocking g(KL) in vitro eliminates dynamic adaptation but also lengthens the membrane time constant. We replaced g(KL) with a static leak in silico to recover the short membrane time constant and found that silicon neurons could mimic the spike-time precision of their biological counterparts, but only over a narrow range of stimulus intensities and biophysical parameters. The dynamics of g(KL) were required for precise spike timing robust to stimulus variation across a heterogeneous population of silicon neurons, thus explaining how neural and neuromorphic systems may perform precise operations despite inherent variability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.