Abstract

Neural crest stem cells that located in the postnatal hair follicle (HF-NCSC) are considered a promising tool for treatment of nervous system diseases and injuries. It is well known that HF-NCSC can be used in the spinal cord and sciatic nerve reparation but their ability to restore brain structures is poorly studied. In this article we are investigating the interaction between HF-NCSC and a nerve tissue (embryonic and adult). We have found out that HF-NCSC isolated from adult mice grow and differentiate in accordance with the mouse embryo developmental stage when co-cultured with the embryonic nerve tissue. The HF-NCSC migration is slower in the late embryonic tissue co-culture system compared to the early one. This phenomenon is related to the motor function of the cells but not to their proliferation level. We have demonstrated that the embryonic nerve tissue maintains HF-NCSC an undifferentiated status, while an adult brain tissue inhibits the cell proliferation and activates the differentiation processes. Besides, HF-NCSC pre-differentiated into the neuronal direction shows a higher survival and migration rate after the transplantation into the adult brain tissue compared to the undifferentiated HF-NCSC. Thus, we have investigated the postnatal HF-NCSC response to the nerve tissue microenvironment to analyze their possible application to the brain repair processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.