Abstract

The use of optical instrumentation in advanced nuclear fission systems, such as molten salt reactors, liquid metal-cooled reactors, and high-temperature gas-cooled reactors, has the potential to enhance reactor safety and economic performance through in situ and online measurement of reactor conditions. Selection of suitable optical components, such as optical windows and fibers, is essential for operation of optical instrumentation in intense radioactive and thermal environments inherent to nuclear reactor systems. We present the development and performance of a self-contained and mobile post-irradiation examination system for rapid characterization of the optical properties of materials. The instrument combines linear absorption and nanosecond Z-scan modules in a compact, relocatable design. The system mobility allows for the evaluation of optical samples at the site of irradiation, minimizing the delay between extraction from the irradiation site and optical characterization. This provides nearly real-time information on the material performance under simultaneous irradiation and thermal annealing, simulating the relevant conditions for the use of those components in nuclear power systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.