Abstract

We propose that if there are two small pocket-like Fermi surfaces, and the spin susceptibility is pronounced around a wave vector {\bf Q} that bridges the two pockets, the spin-singlet superconductivity mediated by spin fluctuations may have a high transition temperature. Using the fluctuation exchange approximation, this idea is confirmed for the Hubbard on a lattice with alternating hopping integrals, for which $T_c$ is estimated to be almost an order of magnitude larger than those for systems with a large connected Fermi surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.