Abstract
Concentration data derived from 1H NMR analysis of the water-soluble organic compounds from fine aerosol (PM2.5) at three Central European background stations, Košetice, Frýdlant (both in the Czech Republic), and Melpitz (Germany), were used for detailed source apportionment analysis. Two winter and two summer episodes (year 2021) with higher organic concentrations and similar wind directions were selected for NMR analyses. The concentration profiles of 61 water-soluble organic compounds were determined by NMR Aerosolomics and a principal component analysis (PCA) was performed on this dataset. Based on the PCA results, 23 compounds were selected for positive matrix factorization (PMF) analysis in order to identify dominant aerosol sources at rural background sites in Central Europe. Both the PCA and the subsequent PMF analyses clearly distinguished the characteristics of winter and summer aerosol particles.In summer, four factors were identified from PMF and were associated with biogenic aerosol (61–78 %), background aerosol (9–15 %), industrial biomass combustion (7–13 %), and residential heating (5–13 %). In winter, only 3 factors were identified - industrial biomass combustion (33–49 %), residential heating (37–45 %) and a background aerosol (8–30 %). The main difference was observed in the winter season with a stronger contribution of emissions from industrial biomass burning at the Czech stations Košetice and Frýdlant (47–49 %) compared to the Melpitz station (33 %). However, in general, there were negligible differences in identified sources between stations in the given seasons, indicating a certain homogeneity in PM2.5 composition within Central Europe at least during the sampling periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.