Abstract

Porous materials can be modified with physical barriers to control the transport of ions and molecules through channels via an external stimulus. Such capability has brought attention toward drug delivery, separation methods, nanofluidics, and point-of-care devices. In this context, gated platforms on which access to an electrode surface of species in solution can be reversibly hindered/unhindered on demand are appearing as promising materials for sensing and microfluidic switches. The preparation of a reversible gated device usually requires mesoporous materials, nanopores, or molecularly imprinted polymers. Here, we show how the breath-figure method assembly of graphene oxide can be used as a simple strategy to produce gated electrochemical materials. This was achieved by forming an organized porous thin film of graphene oxide onto an ITO surface. Localized brushes of thermoresponsive poly(N-isopropylacrylamide) were then grown to specific sites of the porous film by in situ reversible addition-fragmentation chain-transfer polymerization. The gating mechanism relies on the polymeric chains to expand and contract depending on the thermal stimulus, thus modulating the accessibility of redox species inside the pores. The resulting platform was shown to reversibly hinder or facilitate the electron transfer of solution redox species by modulating temperature from the room value to 45 °C or vice versa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.