Abstract

In this paper, we demonstrated that chemically derived graphene oxide (GO) thin film as a humidity sensitive coating deposited on quartz crystal microbalances (QCMs) for humidity detection. By exposing GO thin film coated QCMs to various relative humidity (RH) environments at room temperature, the humidity sensing characteristics of the QCMs such as sensitivity and linearity, response and recovery, humidity hysteresis were investigated. The experiment results show that GO thin film coated QCMs exhibit an excellent humidity sensing performance. Moreover, the possible humidity sensing mechanism of GO thin film coated QCMs was also investigated by monitoring the crystal's motional resistance change. It is suggested that the frequency response of the QCMs is dependent on water molecules adsorbed/desorbed masses on GO thin film in the low RH range, and on both water molecules adsorbed/desorbed masses on GO thin film and variations in interlayer expansion stress of GO thin film derived from swelling effect in the high RH range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call