Abstract

Fatty acids are essential for life because they are essential components of cellular membranes. Lower animals can synthesize all four classes of fatty acids from non-lipid sources, but both omega-6 and omega-3 cannot be synthesized de novo by 'higher' animals and are therefore essential components of their diet. The relationship between normal variation in diet fatty acid composition and membrane fatty acid composition is little investigated. Studies in the rat show that, with respect to the general classes of fatty acids (saturated, monounsaturated and polyunsaturated) membrane fatty acid composition is homeostatically regulated despite diet variation. This is not the case for fatty acid composition of storage lipids, which responds to diet variation. Polyunsaturated fatty acids are important determinants of physical and chemical properties of membranes. They are the substrates for lipid peroxidation and it is possible to calculate a peroxidation index (PI) for a particular membrane composition. Membrane PI appears to be homeostatically regulated with respect to diet PI. Membrane fatty acid composition varies among species and membrane PI is inversely correlated to longevity in mammals, birds, bivalve molluscs, honeybees and the nematode Caenorhabditis elegans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.