Abstract

To dehydrate the isopropanol (IPA) by the pervaporation separation process at 25°C, the polysulfonamide thin-film composite (TFC) membranes were prepared via the interfacial polymerization of diamines including 1,3-diaminopropane (DAPE), 1,3-cyclohexanediamine (CHDA) and m-phenylenediamine (MPDA) with 1,3-benzenedisulfonyl dichloride (BDSC) on the surface of modified asymmetric polyacrylonitrile (mPAN) membrane. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectrometry, atomic force microscope (AFM) and water contact angle (WCA) measurements were applied to analyze chemical structure, surface roughness and hydrophilicity of the polymerized layer of composite membrane. In the dehydration of aqueous isopropanol solutions, the DAPE-BDSC/mPAN membrane had the higher permeation flux and the similar water concentration in permeate compared with the CHDA-BDSC/mPAN and MPDA-BDSC/mPAN membranes. The pervaporation performance of the composite membrane was affected by the chemical structure of the polysulfonamide polymer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call