Abstract
The photooxidations of exemplary branched acyclic alkanes and cycloalkanes by a range of polyoxotungstates varying in charge density, ground-state redox potential, acidity, and other properties were examined in detail. The organic products generated in these reactions depend on the polyoxometalate used, and in particular on the ground-state redox potential of the complex. Under anaerobic conditions acyclic branched alkanes yield principally alkenes, while cycloalkanes yield principally alkenes and dimers. Alkyl methyl ketones, derived in part from reaction with acetonitrile solvent, and isomerized alkanes are produced with some alkane substrates. Under aerobic conditions, autoxidation, initiated by radicals generated in the photoinduced redox chemistry, is observed. Under aerobic conditions the polyoxotungstates with formal redox potentials more negative than {minus}1.0 V vs Ag/AgNO{sub 3}(CH{sub 3}CN), such as W{sub 10}O{sub 32}{sup 4{minus}} and W{sub 6}O{sub 19}{sup 2{minus}}, photochemically dehydrogenate branched acyclic alkanes in high selectivity to {alpha}-olefins and the least substituted alkenes, products heretofore undocumented in photooxidation reactions catalyzed by polyoxometalates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have