Abstract
A series of osmium polypyridyl complexes having various ground-state reduction potentials has been synthesized and used to sensitize nanoporous titanium dioxide electrodes to solar illumination. The spectral response and current vs potential properties of electrodes modified with these dyes have been compared with the behavior of their ruthenium analogues. The trends can be explained by the differences in absorption spectra and ground-state redox potentials. The osmium complexes appear to be promising candidates for further optimization in operating photoelectrochemical cells for solar energy conversion applications. Of the materials studied, all complexes having ground-state redox potentials in methanol more positive than ∼0.4 V vs aqueous SCE were able to sustain oxidation of I-/I3- with a high steady-state quantum yield. For electrodes with very low dye coverages, the open-circuit voltage was mainly determined by the rate of reduction of I2, whereas for high dye coverages, the open-circuit voltage depended on the nature of the complex and on the dye loading level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.