Abstract
Although tissue engineering has shown great advances in recent years, creating proper mechanical properties and cell growth microenvironments is still challenging. In this study, electrospun nanofibrous membranes were hot embossed to develop three-dimensional hierarchical micro/nanostructures that load and culture human umbilical-vein endothelial cells (HUVECs). The hot-embossed membranes exhibited not only superior mechanical properties (the tensile strength was 7.01 ± 0.18 MPa and the tensile modulus was 166.91 ± 15.54 MPa), but also better cell viability evaluated through a CCK-8 assay and fluorescent dye. The grating and well arrays of the micropatterned fibre mats encouraged the HUVECs to proliferate. Therefore, the approach proposed in this paper—combined electrospinning and hot embossing—has bright prospects in biomedical applications for the use of polymer scaffold in tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.