Abstract
Polyglycolic acid (PGA) is commonly used as a scaffold for tissue engineering. Recent studies utilized PGA as a scaffold for vascular tissue engineering using bovine and porcine smooth muscle cells (SMCs). In engineered vessels, the SMCs displayed high rates of mitosis and dedifferentiation in areas where PGA fragments were present. We hypothesized that PGA breakdown products, sequestered within a SMC vessel at the conclusion of culture, led to increased proliferation and dedifferentiation of vascular SMCs. To test this hypothesis, the current study assessed possible means by which PGA breakdown products could lead to changes in SMC phenotype. SMCs grown in high concentrations of PGA breakdown products showed, by Western blotting, decreased expression of calponin, a marker for SMC differentiation. The same was true for SMCs grown in glycolic acid (GA), which also showed decreased expression of proliferating cell nuclear antigen (PCNA), a marker for SMC proliferation. In contrast, cells grown in varying amounts of NaCl or HCl showed little change in differentiation. We conclude that, independent of acidity or osmolality, plausible products of PGA degradation appear to induce dedifferentiation of porcine SMCs in vitro. Because of dedifferentiation and decreased mitosis, commercially available PGA may not represent an optimal scaffold for vascular tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.