Abstract

Atmospheric volatile organic compounds (VOCs) were collected from different functional zones of Lianyungang during the summer and autumn of 2018. One-hundred-seven VOCs species were measured by cryogenic pre-concentration and gas chromatography-mass spectrometry (GC/MS). The ozone generation potential (OFP) of VOCs was estimated by maximum incremental reactivity (MIR). Results showed that the average volume fraction of VOCs was (22.1±13.1)×10-9. Alkanes and alkenes from C2-C4 as well as acetone and ethyl acetate were the predominant species, accounting for 59.8%-75.8% of TVOCs. The mean volume fraction in the industrial zone was the largest[(28.4±13.5)×10-9], followed by the scenic zone[(21.7±4.4)×10-9] and the traffic and residential mixed zone[(20.8±7.2)×10-9]. The concentration of VOCs in autumn was significantly higher than that in summer. The industrial zone was the site with the highest volume fraction in autumn (35.4×10-9), while the scenic zone had the highest volume fraction in summer (21.5×10-9). Alkane, sulfur, or oxygen containing compounds and halogenated hydrocarbons were the predominant components of VOCs, accounting for 35.3%, 26.9%, and 15.6% of the total amount, respectively. Due to industrial emissions, the content of sulfur or oxygen containing compounds in the industrial zone was significantly higher than that in scenic zone and the traffic and residential mixed zone. The average ratio of T/B (toluene/benzene) indicated that vehicle and solvent use were the main sources of VOCs in the urban area. The highest OFP was found in the industrial zone, followed by the traffic and residential mixed zone and the scenic zone. Alkenes and aromatics were the largest contributors to OFP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.