Abstract
The situation of air pollution in Guanzhong Plain has been increasing in recent years; hence, it is very important to study the characteristics of volatile organic compounds (VOCs) and their health risks in urban functional zones. We analyzed 115 VOCs using gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high performance liquid chromatography (HPLC) at four sampling sites in the traffic, comprehensive, industrial, and scenic zones of Baoji. We analyzed the main components and key species in the different functional zones. Ozone formation potential (OFP),·OH consumption rate (L·OH), and secondary organic aerosol formation potential (SOAFP) were used to evaluate the environmental impact, and the hazard index (HI) and lifetime cancer risk (LCR) methods were employed. The results revealed that the mean values of φ(TVOCs) in the traffic, comprehensive, industrial, and scenic zones were (59.63±23.85)×10-9, (42.92±11.88)×10-9, (60.27±24.09)×10-9, and (55.54±7.44)×10-9, respectively. The dominant contributors at the traffic zone were alkanes, and those at the other functional zones were OVOCs. Acetaldehyde, acetone, n-butane, and isopentane were abundant at different functional zones. According to the characteristic ratios of VOCs, the average ratio of toluene to benzene (T/B) at the traffic, comprehensive, industrial, and scenic zones were 1.84, 2.39, 1.28, and 1.64, respectively, and the ratio of iso-pentane to n-pentane (i/n) was mainly between 1 and 4. The results indicated that VOCs in Baoji were significantly affected by vehicle emissions and gasoline evaporation, biomass and coal combustion, and industrial coatings and foundry. The ratio of m/p-xylene to ethylbenzene (X/E) was lower than 2 at the four functional zones, and the minimum was 1.79 at the scenic zones; the results revealed that X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport. According to the ratio of formaldehyde to acetaldehyde (C1/C2) and the ratio of acetaldehyde to propanal (C2/C3), it was suggested that there may have been evident anthropogenic emission sources, and the photochemical reaction had an important effect on aldehydes and ketones. Environmental impact assessment results revealed that OVOCs and alkenes contributed significantly to OFP and OFP from large to small was as follows:industrial zone>scenic zone>traffic zone>comprehensive zone. The range of L·OH in each functional zone was 8.77-15.82 s-1, with isoprene contributing the most in the industrial zone and acetaldehyde contributing the most at other functional zones. The SOAFP of each functional zone was as follows:scenic zone>comprehensive zone>traffic zone>industrial zone. Toluene, m/p-xylene, and isoprene were the notable species. According to the health risk assessment of EPA, the HI of toxic VOCs in all functional zones was lower than 1, which was at an acceptable level. However, the number of days with HI>1 in industrial zones accounted for 42.86% of the total sampling days, indicating a high risk. The lifetime carcinogenic risk (LCR) of the traffic, comprehensive, industrial, and scenic zones were 1.83×10-5, 1.21×10-5, 1.85×10-5, and 1.63×10-5, respectively, which were all in grade Ⅲ of the rating system, indicating a high probability of cancer risk. Species with LCR greater than 10-6 were formaldehyde; acetaldehyde; 1,2-dibromoethane; 1,2-dichloroethane; 1,2-dichloropropane; and chloroform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.