Abstract

In this work, the resistive switching and electrical-control of magnetization in Pt/CoFe2O4/Nb:SrTiO3 heterostructures have been investigated. The films exhibit a classic bipolar resistive switching effect with a maximum switch ratio of about 5 × 103 and good anti-fatigue performance. Associated with resistive switching, the saturated magnetization of the thin film at high resistance state is found to be larger than that at low resistance state. Meanwhile, polarized neutron reflectivity of the thin film under different resistance states was in situ measured. The results reveal that the interfacial migration of oxygen vacancies driven by an applied electric field plays an important role in the modulation of resistive and magnetism of CoFe2O4 resistive switching devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call