Abstract

Abstract The skyrmion generator is one of the indispensable components for the future functional skyrmion devices, but the process of generating skyrmion cannot avoid mixing with other magnetic textures, such as skyrmionium and nested skyrmion bags. These mixed magnetic textures will inevitably lead to the blockage of skyrmion transport and even the distortion of data information. Therefore, the design of an efficient skyrmion filter is of great significance for the development of skyrmion-based spintronic devices. In this work, a skyrmion filter scheme is proposed, and the high-efficiency filtering function is demonstrated by micromagnetic simulations. The results show that the filtering effect of the scheme depends on the structure geometry and the spin current density that drives the skyrmion. Based on this scheme, the polarity of the filtered skyrmion can be controlled by switching the magnetization state at the output end, and the “cloning” of the skyrmion can be realized by geometric optimization of the structure. We believe that in the near future, the skyrmion filter will become one of the important components of skyrmion-based spintronic devices in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.