Abstract
Measurements of the internal magnetic field structures using conventional polarimetric approaches are considered extremely challenging in fusion-reactor environments whereas the information on current density profiles is essential to establish steady-state and advance operation scenarios in such reactor-relevant devices. Therefore, on ITER a hybrid system is proposed for the current density measurements that uses both polarimetry and spectral measurements. The spectrum-based approaches have been tested in the Korea Superconducting Tokamak Advanced Research (KSTAR) during the past two plasma campaigns. As such, KSTAR is a test-bed for the proposed ITER hybrid system. Measurements in the plasma core are based on the motional Stark effect (MSE) spectrum of the neutral beam emission. For the edge profiles, the Zeeman effect (ZE) acting on the lithium emission spectrum of the newly installed (2013) Lithium-beam-diagnostic is exploited. The neutral beam emission spectra, complicated by the multi-ion-source beam injection, are successfully fitted making use of the data provided by the Atomic Data and Analysis Structure (ADAS) database package. This way pitch angle profiles could be retrieved from the beam emission spectra. With the same spectrometer/CCD hardware as on MSE, but with a different wavelength range and different lines of sight, the first ZE spectrum measurements have been made. The Zeeman splitting comparable to and greater than the instrumental broadening has been routinely detected at high toroidal field operations ( ∼ 3 Tesla).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have