Abstract
Linearly dispersing Rarita-Schwinger-Weyl (RSW) fermions featuring two Fermi velocities are the key constituents of itinerant spin-3/2 quantum materials. When doped, RSW metals sustain two Fermi surfaces (FSs), around which one fully gapped $s$ wave and five mixed-parity local pairings can take place. The intraband components of four mixed-parity pairings support point nodes at the poles of two FSs, only around which long-lived quasiparticles live. For weak (strong) pairing amplitudes ($\mathrm{\ensuremath{\Delta}}$), gapless north and south poles belonging to the same (different) FS(s) get connected by polar hairs, one-dimensional line nodes occupying the region between two FSs. The remaining one, by contrast, supports four nodal rings in between two FSs, symmetrically placed about their equators, but only when $\mathrm{\ensuremath{\Delta}}$ is small. For large $\mathrm{\ensuremath{\Delta}}$, this paired state becomes fully gapped. The transition temperature and pairing amplitudes follow the BCS scaling. We explicitly showcase these outcomes for a rotationally symmetric RSW metal and contrast our findings when the system possesses an enlarged Lorentz symmetry and with those in spin-3/2 Luttinger materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.