Abstract

The optical transmission property of a hybrid coplanar waveguide consisting of three quarters of a nanoring (TQNR) and a slot cavity resonator is numerically investigated and theoretically analyzed. In this paper, the apparent multilevel plasmon-induced transparency (PIT) effect can be obtained due to the interaction between the resonance modes of the two elements. Combining the calculated magnetic field distribution with the theoretically fitted parameters, the transparency windows of all resonance modes can be clearly investigated. The results show that the second-order transparency window originates from the destructive interference between the bright and dark mode of the hybrid system, while the first- and third-order transparency windows originate from the suppression effect of the dark mode. As the assessment standard for application, the maximal values of appear at the transmission dips and their highest reaches to near 18. While the reaches to an impressive value 270 at the third-order transparent window, and the sensitivity is as high as 2650 nm RIU−1 at the first-order transparent window. This research provides a guide to the practical applications in the visible and near-infrared light region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.