Abstract
In this study, we proposed a bifunctional sensor of high sensitivity and slow light based on carbon nanotubes (CNTs). An array of left semicircular ring (LSR), right semicircular ring (RSR), and circular ring (CR) resonators are utilized to form the proposed metamaterial. The proposed structure can achieve double plasmon-induced transparency (PIT) effects under the excitation of a TM-polarization wave. The double PIT originated from the destructive interference between two bright modes and a dark mode. A coupled harmonic oscillator model is used to describe the destructive interference between the two bright modes and a dark mode, and the simulation results agree well with the calculated results. Moreover, we investigate the influence of the coupling distance, period, and flare angle on the PIT spectra. The relationship between the resonant frequencies, full width at half maximum (FWHM), amplitudes, quality factors (Q), and the coupling distance is also studied. Finally, a high sensitivity of 1.02 THz RIU-1 is obtained, and the transmission performance can be maintained at a good level when the incident angle is less than 40°. Thus, the sensor can cope with situations where electromagnetic waves are not perpendicular to the structure's surface. The maximum figure of merit (FOM) can reach about 8.26 RIU-1; to verify the slow light property of the device, the slow light performance of the proposed structure is investigated, and a maximum time delay (TD) of 22.26 ps is obtained. The proposed CNT-based metamaterial can be used in electromagnetically induced transparency applications, such as sensors, optical memory devices, and flexible terahertz functional devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.