Abstract

When a large number of similar gold particles are organized into complex architectures, the dipolar plasmon spectrum of the individual plasmonic entities gives rise to a broader, red-shifted feature centered around 750 nm. In this work, we show that superstructures fabricated using the convective assisted capillary force assembly method (CA-CFA) and excited at that wavelength display a subwavelength patterning of their optical field intensity that results from the self-consistent coupling between the colloidal nanoparticles. First, we demonstrate the fabrication of shape-controlled three-dimensional assemblies of metallic nanocrystals using the CA-CFA method. In a second step, the absorption band resulting from the mutual coupling between the metallic building blocks is exploited to excite a coupled plasmon mode and map the two-photon luminescence (TPL) by scanning a tightly focused light beam. Highly resolved TPL images show that the morphology of the plasmonic particle assemblies has a strong impact on their optical response. A model based on a rigorous optical Gaussian beam implementation inside a generalized propagator derived from a three-dimensional Green dyadic function accurately reproduces the TPL maps revealing the influence of interparticle separation and thus coupling between the individual particles. Finally, we show that the spatial distribution of the electric field intensity can be controlled by tuning the linear polarization of the optical excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.