Abstract

The catalytic reduction of aromatic nitro compounds by metallic nanoparticles in the presence of sodium borohydride (NaBH4) has been widely studied as model reactions. However, the reaction mechanisms still need further investigations. For example, the origin of the induction time that has often been observed is still controversial. Here, we demonstrated that such catalytic reduction reactions on the surface of colloidal gold nanoparticles (AuNPs) may be inspected by the second-harmonic generation (SHG) and two-photon luminescence (TPL) emission from AuNPs. It was revealed that the SHG and TPL signals from AuNPs were sensitive to the substitution of citrate by active hydride species derived from the hydrolysis of NaBH4. Based on the UV-vis spectroscopy analyses and monitoring the SHG/TPL signals, the induction time in the catalytic reaction of 4-nitrothiophenol was revealed to originate from the hindered adsorption of hydride on the gold surface. This work demonstrated that SHG and TPL can provide a new approach for detecting active hydrides on the surface of metallic nanoparticles in colloids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.